Cytocompatibility of Siloxane-Containing Vaterite/Poly(l-lactic acid) Composite Coatings on Metallic Magnesium
نویسندگان
چکیده
Poly(l-lactic acid)-based films which include 60 wt % of vaterite (V) or siloxane-containing vaterite (SiV) were coated on a pure magnesium substrate, denoted by PLLA/V or PLLA/SiV, respectively, to suppress early corrosion and improve its cytocompatibility. Both coating films adhered to the Mg substrate with 2.3-2.8 MPa of tensile bonding strength. Soaking test for 7 days in α-modified minimum essential medium revealed that the morphological instability of the PLLA/V film caused a higher amount of Mg2+ ion to be released from the coating sample. On the other hand, in the case of the coating with the PLLA/SiV film, no morphological change even after the soaking test was observed, owing to the suppression of the degradation rate. In cell culture tests, the proliferation of mouse osteoblast-like cell (MC3T3-E1) was significantly enhanced by both coatings, in comparison with the uncoated magnesium substrate. The cell morphology revealed that a few less-spread cells were observed on the PLLA/V film, while more elongated cells were done on the PLLA/SiV film. The cells on the PLLA/SiV film exhibited an extremely higher alkaline phosphatase activity after 21 days of incubation than that on the PLLA/V one. The PLLA/SiV film suppressed the early corrosion and enhanced cytocompatibility on metallic magnesium.
منابع مشابه
Development of Magnesium and Siloxane-Containing Vaterite and Its Composite Materials for Bone Regeneration
Development of novel biomaterials with Mg(2+), Ca(2+), and silicate ions releasability for bone regeneration is now in progress. Several inorganic ions have been reported to stimulate bone-forming cells. We featured Ca(2+), silicate, and especially, Mg(2+) ions as growth factors for osteoblasts. Various biomaterials, such as ceramic powders and organic-inorganic composites, that release the ion...
متن کاملDesign and optimization of poly lactic acid/bioglass composite screw for orthopedic applications
However, problems such as osteoporosis due to high elasticity of metals relative to bones, and local infections and systemic problems caused by releasing metallic ions have motivated research on replacing metallic screws with non metallic ones. In this study, the composite containing poly-l-lactic acid and bioactive glass fibers were considered for the design of the screw using ABAQUS software ...
متن کاملEnhanced corrosion resistance and cytocompatibility of biodegradable Mg alloys by introduction of Mg(OH)2 particles into poly (L-lactic acid) coating
A strategy of suppressing the fast degradation behaviour of Mg-based biomaterials by the introduction of one of Mg degradation products Mg(OH)2 was proposed according to the following degradation mechanism, Mg + 2H2O ⇋ Mg(OH)2 + H2↑. Specifically, Mg(OH)2 submicron particles were mixed into poly (L-lactic acid) (PLLA) to synthesize a composite coating onto hydrofluoric acid-pretreated Mg-Nd-Zn-...
متن کاملPreparation of Cotton-Wool-Like Poly(lactic acid)-Based Composites Consisting of Core-Shell-Type Fibers
In previous works, we reported the fabrication of cotton-wool-like composites consisting of siloxane-doped vaterite and poly(l-lactic acid) (SiVPCs). Various irregularly shaped bone voids can be filled with the composite, which effectively supplies calcium and silicate ions, enhancing the bone formation by stimulating the cells. The composites, however, were brittle and showed an initial burst ...
متن کاملAntifungal activity of nano-composite films based on Poly Lactic Acid
Objective(s): Nanocomposite active packaging systems were used to prepare antimicrobial and antifungal properties. This study was to investigate the physical and antimicrobial activity of prepared films against three types of aflatoxin producing fungi Aspergillus Flavus. Material and methods: For investigating the effect of antibacterial nano-covers, the direct contact of 0, 1%, 3% and 5%...
متن کامل